کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8898046 | 1631057 | 2018 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new characterization of subnormality for a class of 2-variable weighted shifts with 1-atomic core
ترجمه فارسی عنوان
تعریف جدیدی از زیرمجموعه برای یک کلاس متغیر با وزن متغیر 2 با هسته 1 هسته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
Given a pair Tâ¡(T1,T2) of commuting subnormal Hilbert space operators, the Lifting Problem for Commuting Subnormals (LPCS) calls for necessary and sufficient conditions for the existence of a commuting pair Nâ¡(N1,N2) of normal extensions of T1 and T2. This is an old problem in operator theory. The aim of this paper is to study LPCS. There are three well-known subnormal characterizations for operators: the Berger Theorem, the Bram-Halmos characterization, and Franks' result. In our paper, we study a new subnormal characterization which is related to these three well-known ones for a class of 2-variable weighted shifts. Thus, we can provide a large nontrivial class of 2-variable weighted shifts in which k-hyponormal (some kâ¥1) and subnormal are equal and the class is invariant under the action (h,â)â¦T(h,â):=(T1h,T2â) (h,ââ¥1).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 538, 1 February 2018, Pages 22-42
Journal: Linear Algebra and its Applications - Volume 538, 1 February 2018, Pages 22-42
نویسندگان
Jaewoong Kim, Jasang Yoon,