کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8899023 | 1631508 | 2018 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Asymptotic behavior of equilibrium states of reaction-diffusion systems with mass conservation
ترجمه فارسی عنوان
رفتار متضاد حالت های تعادلی سیستم های واکنش-انتشار با حفظ جرم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
We deal with a stationary problem of a reaction-diffusion system with a conservation law under the Neumann boundary condition. It is shown that the stationary problem turns to be the Euler-Lagrange equation of an energy functional with a mass constraint. When the domain is the finite interval (0,1), we investigate the asymptotic profile of a strictly monotone minimizer of the energy as d, the ratio of the diffusion coefficient of the system, tends to zero. In view of a logarithmic function in the leading term of the potential, we get to a scaling parameter κ satisfying the relation ε:=d=logâ¡Îº/κ2. The main result shows that a sequence of minimizers converges to a Dirac mass multiplied by the total mass and that by a scaling with κ the asymptotic profile exhibits a parabola in the nonvanishing region. We also prove the existence of an unstable monotone solution when the mass is small.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 264, Issue 2, 15 January 2018, Pages 550-574
Journal: Journal of Differential Equations - Volume 264, Issue 2, 15 January 2018, Pages 550-574
نویسندگان
Jann-Long Chern, Yoshihisa Morita, Tien-Tsan Shieh,