کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8902705 | 1632148 | 2018 | 48 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Crank-Nicolson/Adams-Bashforth scheme for the Burgers equation with H2 and H1 initial data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider the stability and convergence results of the Crank-Nicolson/Adams-Bashforth scheme for the Burgers equation with smooth and nonsmooth initial data. The spatial approximation is based on the standard conforming finite element space. The temporal treatment of the spatial discrete Burgers equation is based on the implicit Crank-Nicolson scheme for the linear term and the explicit Adams-Bashforth scheme for the nonlinear term. Firstly, we prove that the Crank-Nicolson/Adams-Bashforth scheme is almost unconditionally stable with initial data u0âHα (α=1,2). Secondly, the optimal error estimates of the numerical solution in L2-norm are derived with initial data u0âH2, and the error estimates of approximate solution in L2 norm obtained with initial data u0âH1 is reduced by 12. Finally, some numerical examples are provided to verify the established stability theory and convergence results with H2 and H1 initial data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 125, March 2018, Pages 103-142
Journal: Applied Numerical Mathematics - Volume 125, March 2018, Pages 103-142
نویسندگان
Tong Zhang, JiaoJiao Jin, YuGao HuangFu,