کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8902909 1632396 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cycles with a chord in dense graphs
ترجمه فارسی عنوان
چرخه با یک وتر در نمودارهای متراکم
کلمات کلیدی
شگفت انگیز به طرز شگفت انگیزی پرطرفدار، شگفت انگیز شگفت انگیز، چرخه مرتب،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
A cycle of order k is called a k-cycle. A non-induced cycle is called a chorded cycle. Let n be an integer with n≥4. Then a graph G of order n is chorded pancyclic if G contains a chorded k-cycle for every integer k with 4≤k≤n. Cream, Gould and Hirohata (Australas. J. Combin. 67 (2017), 463-469) proved that a graph of order n satisfying degGu+degGv≥n for every pair of nonadjacent vertices u,  v in G is chorded pancyclic unless G is either Kn2,n2 or K3□K2, the Cartesian product of K3 and K2. They also conjectured that if G is Hamiltonian, we can replace the degree sum condition with the weaker density condition |E(G)|≥14n2 and still guarantee the same conclusion. In this paper, we prove this conjecture by showing that if a graph G of order n with |E(G)|≥14n2 contains a k-cycle, then G contains a chorded k-cycle, unless k=4 and G is either Kn2,n2 or K3□K2, Then observing that Kn2,n2 and K3□K2 are exceptions only for k=4, we further relax the density condition for sufficiently large k.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 341, Issue 8, August 2018, Pages 2131-2141
نویسندگان
, , , ,