کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8903055 1632401 2018 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Choosability with union separation
ترجمه فارسی عنوان
انتخاب با جدایی اتحادیه
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
List coloring generalizes graph coloring by requiring the color of a vertex to be selected from a list of colors specific to that vertex. One refinement of list coloring, called choosability with separation, requires that the intersection of adjacent lists is sufficiently small. We introduce a new refinement, called choosability with union separation, where we require that the union of adjacent lists is sufficiently large. For t≥k, a (k,t)-list assignment is a list assignment L where |L(v)|≥k for all vertices v and |L(u)∪L(v)|≥t for all edges uv. A graph is (k,t)-choosable if there is a proper coloring for every (k,t)-list assignment. We explore this concept through examples of graphs that are not (k,t)-choosable, demonstrating sparsity conditions that imply a graph is (k,t)-choosable, and proving that all planar graphs are (3,11)-choosable and (4,9)-choosable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 341, Issue 3, March 2018, Pages 600-605
نویسندگان
, , ,