کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8904296 1633418 2018 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tarski's theorem on intuitionistic logic, for polyhedra
ترجمه فارسی عنوان
قضیه تارسکی در منطق شهود، برای چندضلعی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
چکیده انگلیسی
In 1938, Tarski proved that a formula is not intuitionistically valid if, and only if, it has a counter-model in the Heyting algebra of open sets of some topological space. In fact, Tarski showed that any Euclidean space Rn with n⩾1 suffices, as does e.g. the Cantor space. In particular, intuitionistic logic cannot detect topological dimension in the Heyting algebra of all open sets of a Euclidean space. By contrast, we consider the lattice of open subpolyhedra of a given compact polyhedron P⊆Rn, prove that it is a locally finite Heyting subalgebra of the (non-locally-finite) algebra of all open sets of P, and show that intuitionistic logic is able to capture the topological dimension of P through the bounded-depth axiom schemata. Further, we show that intuitionistic logic is precisely the logic of formulæ valid in all Heyting algebras arising from polyhedra in this manner. Thus, our main theorem reconciles through polyhedral geometry two classical results: topological completeness in the style of Tarski, and Jaśkowski's theorem that intuitionistic logic enjoys the finite model property. Several questions of interest remain open. E.g., what is the intermediate logic of all closed triangulable manifolds?
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 169, Issue 5, May 2018, Pages 373-391
نویسندگان
, , , ,