کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8915332 1641096 2018 53 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear rock-physics inversion using artificial neural network optimized by imperialist competitive algorithm
ترجمه فارسی عنوان
معکوس فیزیکی غیر خطی با استفاده از شبکه عصبی مصنوعی بهینه شده توسط الگوریتم رقابت امپریالیستی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
چکیده انگلیسی
Estimation of petrophysical properties from seismic attributes can be considered as rock-physics inversion problem. In general, rock-physics models are nonlinear and require nonlinear optimization algorithms to solve the inversion problem. Typically, the conventional method of inversion employs the linearized approximation of the forward model and utilizes the linear inversion methods which are usually not accurate enough and prone to be trapped in a local minimum. This paper presents a novel method of nonlinear rock-physics inversion based on artificial neural network optimized by imperialist competitive algorithm. We used Kuster and Toksöz inclusion model with spherical geometric factor as forward model to map the model parameters to the observed data. To quantify the performance of the method, we compare it with the Bayesian linearized rock-physics method. The result shows that the presented method can achieve more reliable and accurate inversion of the petrophysical parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Geophysics - Volume 155, August 2018, Pages 138-148
نویسندگان
, , ,