کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8915613 1641115 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
پیش نمایش صفحه اول مقاله
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
چکیده انگلیسی
We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Geophysics - Volume 136, January 2017, Pages 444-454
نویسندگان
, , , ,