کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8915710 1641463 2018 54 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Production, pathways and budgets of melts in mid-ocean ridges: An enthalpy based thermo-mechanical model
ترجمه فارسی عنوان
تولید، مسیرها و بودجه های ذوب در میانه های اقیانوس: مدل حرارتی مکانیکی مبتنی بر آنتالپی
کلمات کلیدی
مدل سازی عددی مشت، جریان دارسی لنزهای ریختن خنک شدن زیر پوسته، ماگما پراکنده نظریه دوگانه
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
چکیده انگلیسی
Using an enthalpy based thermo-mechanical model we provide a theoretical evaluation of melt production beneath mid-ocean ridges (MORs), and demonstrate how the melts subsequently develop their pathways to sustain the major ridge processes. Our model employs a Darcy idealization of the two-phase (solid-melt) system, accounting enthalpy (ΔH) as a function of temperature dependent liquid fraction (ϕ). Random thermal perturbations imposed in this model set in local convection that drive melts to flow through porosity controlled pathways with a typical mushroom-like 3D structure. We present across- and along-MOR axis model profiles to show the mode of occurrence of melt-rich zones within mushy regions, connected to deeper sources by single or multiple feeders. The upwelling of melts experiences two synchronous processes: 1) solidification-accretion, and 2) eruption, retaining a large melt fraction in the framework of mantle dynamics. Using a bifurcation analysis we determine the threshold condition for melt eruption, and estimate the potential volumes of eruptible melts (∼3.7 × 106 m3/yr) and sub-crustal solidified masses (∼1-8.8 × 106 m3/yr) on an axis length of 500 km. The solidification process far dominates over the eruption process in the initial phase, but declines rapidly on a time scale (t) of 1 Myr. Consequently, the eruption rate takes over the solidification rate, but attains nearly a steady value as t > 1.5 Myr. We finally present a melt budget, where a maximum of ∼5% of the total upwelling melt volume is available for eruption, whereas ∼19% for deeper level solidification; the rest continue to participate in the sub-crustal processes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics of the Earth and Planetary Interiors - Volume 277, April 2018, Pages 55-69
نویسندگان
, , , ,