کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8960166 | 1646383 | 2019 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-objective firefly algorithm based on compensation factor and elite learning
ترجمه فارسی عنوان
الگوریتم چند لایه کره ای بر اساس عامل جبران و یادگیری نخبگان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Aimed at early maturing and poor accuracy of multi-objective firefly algorithms, we propose a multi-objective firefly algorithm based on compensation factor and elite learning (CFMOFA). Based on iterations by introducing a compensation factor into the firefly learning formula, constraints by population can be overcome and the Pareto optimal solution can be approached in a reduced period. The non-inferior solutions produced in iterations were stored in the external archive and a random external archive particle was employed as the elite particle for population evolution. In this way, the detection range of firefly was extended and diversity and accuracy of non-inferior solution set were enhanced. The conventional algorithms, the improved algorithms and the proposed multi-objective optimization algorithm were tested and compared with each other. The results indicated great advantages of the proposed algorithm in convergence, diversity, and robustness and the proposed algorithm is an effective multi-objective optimization method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 91, February 2019, Pages 37-47
Journal: Future Generation Computer Systems - Volume 91, February 2019, Pages 37-47
نویسندگان
Li Lv, Jia Zhao, Jiayuan Wang, Tanghuai Fan,