| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 8965161 | 1646702 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Cross-covariance regularized autoencoders for nonredundant sparse feature representation
ترجمه فارسی عنوان
کوواریانس کوانتومی برای تنظیم مجدد ویژگی های کم توان قابل استفاده در دستگاه های خودکار تنظیم شده است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اتوکدر، متقابل کوواریانس، یادگیری عمیق، نمایندگی ویژگی، زمینه های پذیرفته شده،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
We propose a new feature representation algorithm using cross-covariance in the context of deep learning. Existing feature representation algorithms based on the sparse autoencoder and nonnegativity-constrained autoencoder tend to produce duplicative encoding and decoding receptive fields, which leads to feature redundancy and overfitting. We propose using the cross-covariance to regularize the feature weight vector to construct a new objective function to eliminate feature redundancy and reduce overfitting. The results from the MNIST handwritten digits dataset, the NORB normalized-uniform dataset and the Yale face dataset indicate that relative to other algorithms based on the conventional sparse autoencoder and nonnegativity-constrained autoencoder, our method can effectively eliminate feature redundancy, extract more distinctive features, and improve sparsity and reconstruction quality. Furthermore, this method improves the image classification performance and reduces the overfitting of conventional networks without adding more computational time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 316, 17 November 2018, Pages 49-58
Journal: Neurocomputing - Volume 316, 17 November 2018, Pages 49-58
نویسندگان
Jie Chen, ZhongCheng Wu, Jun Zhang, Fang Li, WenJing Li, ZiHeng Wu,
