کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8965167 | 1646702 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unpaired cross domain image translation with augmented auxiliary domain information
ترجمه فارسی عنوان
ترجمه تصویر زمینه متقاطع ناحیه با اطلاعات دامنه کمکی افزوده شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Image translation is that converting an image from one domain to another domain. Many existing methods with GANs learn a mapping function by adversarial loss and other constraints. However, this learned mapping function can not express the detailed information of generated images and its generalization capability is not enough. To address this problem, in this paper, we propose an unpaired generative adversarial networks model with augmented auxiliary domain. The proposed model combines augmented auxiliary domain with the domains to be learned together to model. In particular, we design multiple generators and discriminators to achieve unpaired cross domain learn. The designed generators and discriminators are subject to multiple adversarial losses and full cycle constraint losses, which can learn the information of augmented auxiliary domain and reduce their mapping space. At last, we conduct experiments on seven cases and the results show that our model has better performance than other unpaired cross domain methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 316, 17 November 2018, Pages 112-123
Journal: Neurocomputing - Volume 316, 17 November 2018, Pages 112-123
نویسندگان
Yan Gan, Junxin Gong, Mao Ye, Yang Qian, Kedi Liu,