کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9197923 1188879 2005 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis
چکیده انگلیسی
In the statistical analysis of fMRI data, the parameter of primary interest is the effect of a contrast; of secondary interest is its standard error, and of tertiary interest is the standard error of this standard error, or equivalently, the degrees of freedom (df). In a ReML (Restricted Maximum Likelihood) analysis, we show how spatial smoothing of temporal autocorrelations increases the effective df (but not the smoothness of primary or secondary parameter estimates), so that the amount of smoothing can be chosen in advance to achieve a target df, typically 100. This has already been done at the second level of a hierarchical analysis by smoothing the ratio of random to fixed effects variances (Worsley, K.J., Liao, C., Aston, J.A.D., Petre, V., Duncan, G.H., Morales, F., Evans, A.C., 2002. A general statistical analysis for fMRI data. NeuroImage, 15:1-15); we now show how to do it at the first level, by smoothing autocorrelation parameters. The proposed method is extremely fast and it does not require any image processing. It can be used in conjunction with other regularization methods (Gautama, T., Van Hulle, M.M., in press. Optimal spatial regularisation of autocorrelation estimates in fMRI analysis. NeuroImage.) to avoid unnecessary smoothing beyond 100 df. Our results on a typical 6-min, TR = 3, 1.5-T fMRI data set show that 8.5-mm smoothing is needed to achieve 100 df, and this results in roughly a doubling of detected activations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 26, Issue 2, June 2005, Pages 635-641
نویسندگان
,