کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9198382 | 1188896 | 2005 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We have previously proposed a statistical method for extracting a plasma time-activity curve (pTAC) from dynamic PET images, named EPICA, for kinetic analysis of cerebral glucose metabolism. We assumed that the dynamic PET images consist of a blood-related component and a tissue-related component which are spatially independent in a statistical sense. The aim of this study is to investigate the utility of EPICA in imaging total distribution volume (DVt) and binding potential (BP) with Logan plots in a neuroreceptor mapping study. We applied EPICA to dynamic [11C]MPDX PET images in 25 subjects, including healthy subjects and patients with brain diseases, and validated the estimated pTACs. [11C]MPDX is a newly developed radiopharmaceutical for mapping cerebral adenosine A1 receptors. EPICA successfully extracted pTAC for all 25 subjects. Parametric images of DVts were estimated by applying Logan plots with the EPICA-estimated pTAC and then used to define a reference region. The BPs estimated using EPICA were evaluated in 18 subjects by ROI-based comparison with those obtained using the nonlinear least squares method (NLSM). The calculated BPs were identical to the estimates using NLSM in each subject. We conclude that EPICA is a promising technique that generates parametric images of DVt and BP in neuroreceptor mapping without requiring arterial blood sampling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 26, Issue 3, 1 July 2005, Pages 885-890
Journal: NeuroImage - Volume 26, Issue 3, 1 July 2005, Pages 885-890
نویسندگان
Mika Naganawa, Yuichi Kimura, Tadashi Nariai, Kenji Ishii, Keiichi Oda, Yoshitsugu Manabe, Kunihiro Chihara, Kiichi Ishiwata,