کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
923939 | 1473974 | 2015 | 8 صفحه PDF | دانلود رایگان |
• We examined the types of information used in rapid adjustments of brief interception.
• Severe time constraints for using visual feedback were imposed.
• A predicted sensory consequence of movement was generated just before movement onset.
• The predicted information was used to rapidly adjust the brief interception.
Interceptive actions, such as hitting a ball in baseball or tennis, feature a moving target whose parameters (i.e., velocity or trajectory) differ across trials. This means that players are required to make rapid trial-by-trial adjustments. The purpose of this study was to determine whether a brief interceptive action could be adjusted using predicted sensory consequence of movement (pSCM) information, even under severe time constraints where the participants could not adjust their movement using only visual feedback.Participants performed an interceptive action for targets with two different velocities with different occurrence probabilities (20%, 50%, and 80%). Prior to movement onset, we applied transcranial magnetic stimulation (TMS) to the supplementary motor area (SMA), as TMS of the SMA is known to disrupt pSCM activity. We hypothesized that if pSCM information were used to adjust the motor parameters of a brief interception, then TMS would significantly increase the constant temporal error (i.e., the difference between the sum of reaction time and movement time and the total target visible time) for a target velocity with a low probability (20%). This hypothesis is based on the previous findings that the pSCM plays an important role in the adjustment of relatively brief interception. We found that while interceptions that lasted about 250 ms after movement onset were unaffected, interceptions that lasted about 350 ms after movement onset could be influenced by TMS. However, TMS interfered with performance provided that the delivery of the pulse occurred 100 ms before movement onset. This finding suggests that pSCM information that is used for a rapid adjustment is generated only in that specific time interval.
Journal: Brain and Cognition - Volume 97, July 2015, Pages 51–58