کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9353659 1266278 2005 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Orthotic effect of a stabilising mechanism in the surface of gymnastic mats on foot motion during landings
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی ارتوپدی، پزشکی ورزشی و توانبخشی
پیش نمایش صفحه اول مقاله
Orthotic effect of a stabilising mechanism in the surface of gymnastic mats on foot motion during landings
چکیده انگلیسی
The purpose of this study was to examine two hypotheses: (a) mat hardness affects foot motion during landing; (b) the influence of a surface stabilising interface integrated in a mat on foot motion is detectable. Two studies were carried out: In the first one, six female gymnasts performed barefoot landings from different falling heights onto three mats having different hardness. In the second study, a stabilising mechanism was integrated in the surface of three new mats with different hardness. Three high speed video cameras (250 Hz) captured the motion of the left leg and foot. These were modelled by means of a four rigid body system. The maximal eversion at the ankle joint was not influenced by the different mats (hard: 4.6° ± 1.9 to 9.3° ± 3.4, medium: 3.1° ± 2.7 to 7.4° ± 3.5, soft: 4.8° ± 2.1 to 8.4° ± 3.5). The soft mat without the stabilised surface showed higher eversion values (p < 0.05) between forefoot and rearfoot (medial joint: hard: 5.1° ± 3.2 to 7.3° ± 3.3, medium: 6.9° ± 3.1 to 7.5° ± 2.9, soft: 12.7° ± 4.1 to 13.4° ± 3.3; lateral joint: hard: 8.5° ± 3.1 to 9.7° ± 1.1, medium: 9.5° ± 2.6 to 11.2° ± 3.3, soft: 12.1° ± 2.3 to 15.7° ± 3.3). For the mats with the surface stabilising interface, the different hardness did not cause any significant differences in maximal eversion values at the medial (hard: 1.5° ± 3.3 to 5.5° ± 4.5, medium: 1.3° ± 3.5 to 5.1° ± 3.6, soft: 0.7° ± 4.9 to 5.4° ± 4.2) nor at the lateral (hard: 11.3° ± 4.2 to 17.3° ± 4.2, medium: 12.3° ± 4.8 to 17.1° ± 3.7, soft: 11.5° ± 4.6 to 17.1° ± 4.3) forefoot joints. The structure of the mat and the consequent deformation hollow did not influence the kinematics of the ankle joint during landings, but it influenced the motion at the medial and the lateral forefoot joints. By means of a stabilised surface, it is possible to reduce the influence of mat deformation on the maximal eversion between forefoot and rearfoot.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Electromyography and Kinesiology - Volume 15, Issue 5, October 2005, Pages 507-515
نویسندگان
, , ,