کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9414745 1292057 2005 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Superoxide dismutase isoforms 1 and 2 in lumbar spinal cord of neonatal rats after sciatic nerve transection and melatonin treatment
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب تکاملی
پیش نمایش صفحه اول مقاله
Superoxide dismutase isoforms 1 and 2 in lumbar spinal cord of neonatal rats after sciatic nerve transection and melatonin treatment
چکیده انگلیسی
Oxidative stress has been implicated in motoneuron death secondary to axotomy in the neonatal period. We studied the effect of sciatic transection at P2 on the motoneuron population in the lumbar enlargement of newborn rats looking for a protective role of daily doses of the antioxidant melatonin. The animals were allowed to survive from P2 to P7, and the spinal cords were processed for immunohistochemistry for superoxide dismutase (SOD) isoforms 1 and 2 and nitric oxide synthase (nNOS) (at 2, 3, 5, and 7 days post-natum), histological neuron counting and immunoblotting for the SOD isoforms (both at 2, 3, and 7 days post-natum). Melatonin reduced by 75% motoneuron loss due to axotomy at P3 and P7. Neither sciatic transection nor melatonin induced any detectable changes in the immunoreactivity patterns of the enzymes. SOD1 was expressed diffusely in the cytoplasm of neurons and ependyma and in the nuclei of presumed glial cells from P2 to P7. SOD2 was detected in neurons and ependyma and its expression was similar to SOD1 at P2 but decreased later to a spotty cytoplasmic pattern in motoneurons. nNOS was localized to the cytoplasm of a few small cells in the ventral and dorsal horns and around the central canal. Immunoblotting at 1 day postaxotomy detected a significant increase in SOD1 expression in melatonin-treated axotomized rats and a decrease in controls after axotomy and vehicle. Blotting for SOD2 did not show significant changes between groups at any time. This study provides the first evidence that SOD2 immunostaining pattern varies during motoneuron postnatal development and that melatonin alters the expression of SOD1 in the present model of peripheral nerve injury.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Developmental Brain Research - Volume 154, Issue 2, 8 February 2005, Pages 217-225
نویسندگان
, , , , , , , ,