کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9416141 1614330 2005 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hindlimb loading determines stepping quantity and quality following spinal cord transection
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Hindlimb loading determines stepping quantity and quality following spinal cord transection
چکیده انگلیسی
We compared the bipedal hindlimb stepping ability of untrained and trained (step-trained 6 min/day) spinal rats (mid-thoracic spinal cord transection at post-natal day 5) at different levels of body weight support on a treadmill over a 40-day period, starting at 69 days of age. A robotic device provided precise levels of body weight support and recorded hindlimb movement. We assessed stepping ability using: (1) step quantity determined from the measured hindlimb movement, (2) ordinal scales of paw placement, weight-bearing, and limb flexion, and (3) the lowest level of body weight support at which stepping was maintained. Stepping quantity and quality depended strongly on the level of support provided. Stepping ability improved with time, but only at the higher levels of weight-bearing, and independently of training. Increasing limb loading by gradually decreasing body weight support altered the spatiotemporal properties of the steps, resulting in an increase in step length and stance duration and a decrease in swing and step cycle duration. The rats progressively improved their ability to support more load before collapsing from a maximum of about 42 g (∼25% of body weight) at Day 1 to 73 g (∼35% of body weight) at Day 40. We conclude that the level of hindlimb loading provided to a spinally transected rat strongly influences the quantity and quality of stepping. Furthermore, the relationship between stepping ability and loading conditions changes with time after spinal cord transection and is unaltered by small amounts of step training. Finally, load-bearing failure point can be a quantitative measure of locomotor recovery following spinal cord injury, especially for severely impaired animals that cannot step unassisted.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research - Volume 1050, Issues 1–2, 19 July 2005, Pages 180-189
نویسندگان
, , , , , , ,