کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9416467 1614335 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast neurotransmission in the rat medial preoptic nucleus
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Fast neurotransmission in the rat medial preoptic nucleus
چکیده انگلیسی
The functional properties of neurotransmission in the medial preoptic nucleus (MPN) were studied in a brain slice preparation from young male rats. The aims were to evaluate the thin slice preparation for studying evoked synaptic responses in MPN neurons, to characterize the fast responses triggered by activation of presynaptic nerve fibers in the MPN, and to identify the involved receptor types. Presynaptic stimulation within the MPN evoked postsynaptic voltage and current responses that were blocked by 200 μM Cd2+ or by 2.0 μM tetrodotoxin and were attributed to action potential-evoked transmitter release. The relation to stimulus strength and comparison with spontaneous synaptic currents suggested that in many cases only one presynaptic nerve fiber was excited by the stimulus. Furthermore, the transmission was probabilistic in nature, with frequent failures. Thus, response probability, most likely reflecting transmitter release probability, could be evaluated in the thin slice preparation. Evoked excitatory postsynaptic currents recorded under voltage-clamp conditions were, due to kinetics, I-V relation, and pharmacological properties, attributed to AMPA/kainate receptors and NMDA receptors, whereas inhibitory currents were attributed to GABAA receptors. No responses that could be attributed to glycine or other types of primary transmitters were detected. Although serotonin (5-HT) did not appear to function as a primary transmitter, glutamate- as well as GABA-mediated transmission was suppressed by 500 μM 5-HT, with a clear reduction in response probability observed. 5-HT also reduced the frequency, but not the amplitude, of spontaneous postsynaptic currents and was therefore ascribed a presynaptic site of action.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research - Volume 1040, Issues 1–2, 8 April 2005, Pages 157-168
نویسندگان
, , ,