کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9469787 | 1319063 | 2005 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Chemotaxis and random motility in unsteady chemoattractant fields: a computational study
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We discuss a generic computational model which captures the effects of transient chemoattractant concentration on the chemotactic motility of individual cells. The model solves the appropriate unsteady chemoattractant transport equation using finite differences, while simultaneously executing biased random walks representing individual cells. The simulations were implemented for a 2D homogeneous domain, and two case studies were considered. In the first case study, we consider a single-point source at the origin of the domain which produces chemoattractant, while other cells execute biased random walks toward this point source. We observe that for continuous chemoattractant production, chemoattractant diffusivity has no effect on cell motility, as measured by the mean of time to reach the source. However, in the case of pulsed random production with a specific average duty cycle, the mean time-to-contact is generally minimal with respect to chemoattractant diffusivity over a moderate range of diffusivities. In the second case study, two mobile cells which simultaneously secrete chemoattractant are initially placed a certain distance apart and are then allowed to execute biased random walks. Our model shows that a pulsed random protocol for chemoattractant production facilitates the two cells “finding” one another compared to continuous production. From this case study we also learn that there exists a range of moderate chemoattractant diffusivities for which the mean time-to-contact is minimal when cells both produce/detect chemoattractant and chemotactically migrate. Using these case studies, we discuss how transience in chemoattractant concentration becomes important in characterizing the effectiveness of chemotaxis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 235, Issue 2, 21 July 2005, Pages 221-232
Journal: Journal of Theoretical Biology - Volume 235, Issue 2, 21 July 2005, Pages 221-232
نویسندگان
Ehsan Jabbarzadeh, Cameron F. Abrams,