کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9495919 1335200 2005 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function
چکیده انگلیسی
In this paper we consider the discrete one-dimensional Schrödinger operator with quasi-periodic potential vn=λv(x+nω). We assume that the frequency ω satisfies a strong Diophantine condition and that the function v belongs to a Gevrey class, and it satisfies a transversality condition. Under these assumptions we prove-in the perturbative regime-that for large disorder λ and for most frequencies ω the operator satisfies Anderson localization. Moreover, we show that the associated Lyapunov exponent is positive for all energies, and that the Lyapunov exponent and the integrated density of states are continuous functions with a certain modulus of continuity. We also prove a partial nonperturbative result assuming that the function v belongs to some particular Gevrey classes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 218, Issue 2, 15 January 2005, Pages 255-292
نویسندگان
,