کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9498192 1631199 2005 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weyl's theorem for upper triangular operator matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Weyl's theorem for upper triangular operator matrices
چکیده انگلیسی
Let σab(T)={λ∈C:T-λIisnotanuppersemi-Fredholmoperatorwithfiniteascent} be the Browder essential approximate point spectrum of T ∈ B(H) and let σd(T)={λ∈C:T-λIisnotsurjective} be the surjective spectrum of T. In this paper it is shown that if MC=AC0B is a 2 × 2 upper triangular operator matrix acting on the Hilbert space H ⊕ K, then the passage from σab(A) ∪ σab(B) to σab(MC) is accomplished by removing certain open subsets of σd(A) ∩ σab(B) from the former, that is, there is equalityσab(A)∪σab(B)=σab(MC)∪G,where G is the union of certain of the holes in σab(MC) which happen to be subsets of σd(A) ∩ σab(B). Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, it also explores how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 402, 1 June 2005, Pages 61-73
نویسندگان
, , ,