| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9500462 | 1337730 | 2005 | 18 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The holonomy algebra g of an indecomposable Lorentzian (n+2)-dimensional manifold M is a weakly-irreducible subalgebra of the Lorentzian algebra so1,n+1. L. Berard Bergery and A. Ikemakhen divided weakly-irreducible not irreducible subalgebras into 4 types and associated with each such subalgebra g a subalgebra hâson of the orthogonal Lie algebra. We give a description of the spaces R(g) of the curvature tensors for algebras of each type in terms of the space P(h) of h-valued 1-forms on Rn that satisfy the Bianchi identity and reduce the classification of the holonomy algebras of Lorentzian manifolds to the classification of irreducible subalgebras h of so(n) with L(P(h))=h. We prove that for n⩽9 any such subalgebra h is the holonomy algebra of a Riemannian manifold. This gives a classification of the holonomy algebras for Lorentzian manifolds M of dimension ⩽11.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Differential Geometry and its Applications - Volume 22, Issue 1, January 2005, Pages 1-18
											Journal: Differential Geometry and its Applications - Volume 22, Issue 1, January 2005, Pages 1-18
نویسندگان
												Anton S. Galaev,