کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9501711 | 1338779 | 2005 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The nonlinear Schrödinger (NLS) equation can be derived as an amplitude equation describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet. The purpose of this paper is to prove estimates, between the formal approximation, obtained via the NLS equation, and true solutions of the original system in case of non-trivial quadratic resonances. It turns out that the approximation property (APP) holds if the approximation is stable in the system for the three-wave interaction (TWI) associated to the resonance. We construct a counterexample showing that the NLS equation can fail to approximate the original system if instability occurs for the approximation in the TWI system. In the unstable case we give some arguments why the validity of the APP can be expected for spatially localized solutions and why it cannot be expected for non-localized solutions. Although, we restrict ourselves to a nonlinear wave equation as original system we believe that the results hold in more general situations, too.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 216, Issue 2, 15 September 2005, Pages 354-386
Journal: Journal of Differential Equations - Volume 216, Issue 2, 15 September 2005, Pages 354-386
نویسندگان
Guido Schneider,