کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9522181 1634954 2005 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Refining the noble gas record of the Réunion mantle plume source: Implications on mantle geochemistry
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Refining the noble gas record of the Réunion mantle plume source: Implications on mantle geochemistry
چکیده انگلیسی
We report isotope analyses of helium, neon, argon, and xenon using different extraction techniques such as stepwise dynamic and static crushing, and high-resolution stepwise heating of three mantle xenoliths from Réunion Island. He and Ne isotopic compositions were similar to previously reported Réunion data, yielding a more radiogenic composition when compared to the Hawaiian or Icelandic mantle plume sources. We furthermore observed correlated 129Xe/130Xe and 136Xe/130Xe ratios following the mantle trend with maximum values of 6.93 ± 0.14 and 2.36 ± 0.06, respectively. High-resolution argon analyses resulted in maximum 40Ar/36Ar ratios of 9000-11,000, in agreement with maximum values obtained in previous studies. We observed a well-defined hyperbolic mixing curve between an atmospheric and a mantle component in a diagram of 40Ar/36Ar vs. 20Ne/22Ne. Using a mantle 20Ne/22Ne of 12.5 (Ne-B) a consistent 40Ar/36Ar value of 11,053 ± 220 in sample ILR 84-4 was obtained, whereas extrapolations to a higher mantle 20Ne/22Ne ratio of 13.8 (solar wind) would lead to a much higher 40Ar/36Ar ratio of 75,000, far above observed maximum values. This favours a mantle 20Ne/22Ne of about 12.5 considered to be equivalent to Ne-B. Extrapolated and estimated 40Ar/36Ar ratios of the Réunion, Iceland, Loihi, and MORB mantle sources, respectively, tend to be linearly correlated with air corrected 21Ne/22Ne and show the same systematic sequence of increasing relative contributions in radiogenic isotopes (Iceland-Loihi-Réunion-MORB) as observed for 4He/3He. In general, He-Ne-Ar isotope systematics of the oceanic mantle can be explained by following processes: (i) different degree of mixing between pure radiogenic and pure primordial isotopes generating the MORB and primitive plume (Loihi-type) endmembers; (ii) relatively recent fractionation of He relative to Ne and Ar, in one or both endmembers; (iii) after the primary fractionation event, different degrees of mixing between melts or fluids of MORB and primitive plume affinity generate the variety of observed OIB data, also on a local scale; (iv) very late-stage secondary fractionation during magma ascent and magma degassing leads to further strong variation in He/Ne and He/Ar ratios.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volume 240, Issues 3–4, 15 December 2005, Pages 573-588
نویسندگان
, ,