کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9555326 | 1376604 | 2005 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Gauss-Hermite quadrature is often used to evaluate and maximize the likelihood for random component probit models. Unfortunately, the estimates are biased for large cluster sizes and/or intraclass correlations. We show that adaptive quadrature largely overcomes these problems. We then extend the adaptive quadrature approach to general random coefficient models with limited and discrete dependent variables. The models can include several nested random effects (intercepts and coefficients) representing unobserved heterogeneity at different levels of a hierarchical dataset. The required multivariate integrals are evaluated efficiently using spherical quadrature rules. Simulations show that adaptive quadrature performs well in a wide range of situations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 128, Issue 2, October 2005, Pages 301-323
Journal: Journal of Econometrics - Volume 128, Issue 2, October 2005, Pages 301-323
نویسندگان
Sophia Rabe-Hesketh, Anders Skrondal, Andrew Pickles,