کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9555391 | 1376611 | 2005 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quasi-maximum likelihood estimation for conditional quantiles
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we construct a new class of estimators for conditional quantiles in possibly misspecified nonlinear models with time series data. Proposed estimators belong to the family of quasi-maximum likelihood estimators (QMLEs) and are based on a new family of densities which we call 'tick-exponential'. A well-known member of the tick-exponential family is the asymmetric Laplace density, and the corresponding QMLE reduces to the Koenker and Bassett's (Econometrica 46 (1978) 33) nonlinear quantile regression estimator. We derive primitive conditions under which the tick-exponential QMLEs are consistent and asymptotically normally distributed with an asymptotic covariance matrix that accounts for possible conditional quantile model misspecification and which can be consistently estimated by using the tick-exponential scores and Hessian matrix. Despite its non-differentiability, the tick-exponential quasi-likelihood is easy to maximize by using a 'minimax' representation not seen in the earlier work on conditional quantile estimation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 128, Issue 1, September 2005, Pages 137-164
Journal: Journal of Econometrics - Volume 128, Issue 1, September 2005, Pages 137-164
نویسندگان
Ivana Komunjer,