کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
95589 | 160438 | 2014 | 4 صفحه PDF | دانلود رایگان |

• Established a microsatellite profiling system for the blowfly Phormiaregina.
• Developed primers for 84 highly repetitive segments of DNA.
• Revealed consistent genotypes and reasonable levels of genetic variation.
• To determine if corpse movements may be defined based on geographic distribution.
Forensic entomology involves the use of insects and arthropods to assist a spectrum of medico-criminal investigations that range from identifying cases of abuse, corpse movements, and most commonly, post mortem interval estimates. Many of these applications focus on the use of blowflies given their predicable life history characteristics in their larval stages. Molecular tools have become increasingly important in the unambiguous identification of larval blowfly species, however, these same tools have the potential to broaden the array of molecular applications in forensic entomology to include individual identifications and population assignments. Herein, we establish a microsatellite profiling system for the blowfly, Phormiaregina (Diptera: Calliphoridae). The goal being to create a system to identify the population genetic structure of this species and subsequently establish if these data are amenable to identifying corpse movements based on the geographic distribution of specific genetic clusters of blowflies. Using next generation sequencing technology, we screened a partial genomic DNA sequence library of P.regina, searching for di-, tetra-, and penta-nucleotide microsatellite loci. We identified and developed primers for 84 highly repetitive segments of DNA, of which 14 revealed consistent genotypes and reasonable levels of genetic variation (4–26 alleles/locus; heterozygosity ranged from 0.385 to 0.909). This study provides the first step in assessing the utility of microsatellite markers to track the movements and sources of corpses via blowflies.
Journal: Forensic Science International - Volume 240, July 2014, Pages 122–125