کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9637370 1427931 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental evaluation of flame observables for simplified scalar dissipation rate measurements in laminar diffusion flamelets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Experimental evaluation of flame observables for simplified scalar dissipation rate measurements in laminar diffusion flamelets
چکیده انگلیسی
We present a comparative evaluation of the potential of several flame observables to yield a simplified measurement of the scalar dissipation rate (χ). The realization of the importance of this quantity for the structure of diffusion flamelets has led to brilliant experimental efforts targeted to its measurement, with a particular emphasis on χstoich, i.e., its value at the stoichiometric surface, which has been shown to control extinction. Such measurements require a significant amount of experimental resources, since they necessitate the simultaneous acquisition of multi-scalar data. The possibility of a simplified measurement stems from the realization that the related gradient of the mixture fraction scales as the inverse of an appropriately defined thickness of the mixing layer. In this paper, we investigate experimentally the utilization of several flame observables for the measurement of this thickness. In a flat, nitrogen diluted, counterflow, methane/oxygen diffusion flame, the scalar dissipation rate was first measured directly using line Raman imaging of major species and a N2-molecule based definition of the mixture fraction. Additionally, LIF measurements of the hydroxyl radical (OH) and formaldehyde (HCHO) as well as Raman measurements of carbon monoxide (CO) were performed across the flamelet. The precision of χstoich estimates based on the thickness of the layers of these three observables as well as the layers corresponding to [HCHO] × [OH] and [CO] × [OH] “overlap” zones was evaluated in terms of following the theoretically expected inverse-square-root dependence on strain rate. Also, the absolute thickness of these layers was recorded, since it may restrict the application of simplified techniques in turbulent flow fields.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Proceedings of the Combustion Institute - Volume 30, Issue 1, January 2005, Pages 493-500
نویسندگان
, ,