کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9637416 1427931 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow
چکیده انگلیسی
Direct numerical simulations were performed to study the autoignition process of n-heptane fuel spray in a turbulent field. For the solution of the carrier gas fluid, the Eulerian method is employed, while for the fuel droplets, the Lagrangian method is used. Droplets are initialized at random locations in a two-dimensional isotropic turbulent field. A chemistry mechanism for n-heptane with 44 species and 112 reactions was adopted to describe the chemical reactions. Three cases with the same initial global equivalence ratio (0.5) and different initial gas phase temperatures (1100, 1200, and 1300 K) were simulated. In addition, two cases with initial global equivalence ratios of 1.0 and 1.5 and initial temperature 1300 K were simulated to examine the effect of equivalence ratio. Evolution of temperature, species mass fraction, reaction rate, and the joint PDF of temperature and equivalence ratio are presented. Effects of the initial gas temperature and equivalence ratio on vaporization and ignition are discussed. A correlation was derived relating ignition delay times to temperature and equivalence ratio. It was confirmed that with the increase of initial temperature, the autoignition occurs earlier. With the increase of the initial equivalence ratio, however, autoignition occurs later due to a larger decrease in gas phase temperature caused by fuel droplet evaporation. The results obtained in this study are expected to be constructive in understanding fuel spray combustion, such as that in homogeneous charge compression ignition systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Proceedings of the Combustion Institute - Volume 30, Issue 1, January 2005, Pages 893-900
نویسندگان
, ,