کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9650360 | 658835 | 2005 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient RNAi-based gene family knockdown via set cover optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Our computational results on real biological data show that the probabilistic greedy algorithm produces siRNA covers as good as the branch-and-bound algorithm in most cases. Both algorithms return minimal siRNA covers with high predicted probability that the selected siRNAs will be effective at inducing knockdown. We also examine the role of “off-target” interactions: the constraint of avoiding covering untargeted genes can, in some cases, substantially increase the complexity of the resulting solution. Overall, we find that in many common cases our approach significantly reduces the number of siRNAs required in gene family knockdown experiments, as compared to knocking down genes independently.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence in Medicine - Volume 35, Issues 1â2, SeptemberâOctober 2005, Pages 61-73
Journal: Artificial Intelligence in Medicine - Volume 35, Issues 1â2, SeptemberâOctober 2005, Pages 61-73
نویسندگان
Wenzhong Zhao, M. Leigh Fanning, Terran Lane,