کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9651723 | 1438534 | 2005 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Design of nearest neighbor classifiers: multi-objective approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The goal of designing optimal nearest neighbor classifiers is to maximize classification accuracy while minimizing the sizes of both reference and feature sets. A usual way is to adaptively weight the three objectives as an objective function and then use a single-objective optimization method for achieving this goal. This paper proposes a multi-objective approach to cope with the weight tuning problem for practitioners. A novel intelligent multi-objective evolutionary algorithm IMOEA is utilized to simultaneously edit compact reference and feature sets for nearest neighbor classification. Three comparison studies are designed to evaluate performance of the proposed approach. It is shown empirically that the IMOEA-designed classifiers have high classification accuracy and small sizes of reference and feature sets. Moreover, IMOEA can provide a set of good solutions for practitioners to choose from in a single run. The simulation results indicate that the IMOEA-based approach is an expedient method to design nearest neighbor classifiers, compared with an existing single-objective approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 40, Issues 1â2, July 2005, Pages 3-22
Journal: International Journal of Approximate Reasoning - Volume 40, Issues 1â2, July 2005, Pages 3-22
نویسندگان
Jian-Hung Chen, Hung-Ming Chen, Shinn-Ying Ho,