کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653402 | 679728 | 2005 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An alternative switching criterion for independent component analysis (ICA)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In solving the problem of noiseless independent component analysis (ICA) in which sources of super- and sub-Gaussian coexist in an unknown manner, one can be lead to a feasible solution using the natural gradient learning algorithm with a kind of switching criterion for the model probability distribution densities to be selected as super- or sub-Gaussians appropriately during the iterations. In this letter, an alternative switching criterion is proposed for the natural gradient learning algorithm to solve the noiseless ICA problem with both super- and sub-Gaussian sources. It is demonstrated by the experiments that this alternative switching criterion works well on the noiseless ICA problem with both super- and sub-Gaussian sources.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 68, October 2005, Pages 267-272
Journal: Neurocomputing - Volume 68, October 2005, Pages 267-272
نویسندگان
Dengpan Gao, Jinwen Ma, Qiansheng Cheng,