کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9653402 679728 2005 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An alternative switching criterion for independent component analysis (ICA)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An alternative switching criterion for independent component analysis (ICA)
چکیده انگلیسی
In solving the problem of noiseless independent component analysis (ICA) in which sources of super- and sub-Gaussian coexist in an unknown manner, one can be lead to a feasible solution using the natural gradient learning algorithm with a kind of switching criterion for the model probability distribution densities to be selected as super- or sub-Gaussians appropriately during the iterations. In this letter, an alternative switching criterion is proposed for the natural gradient learning algorithm to solve the noiseless ICA problem with both super- and sub-Gaussian sources. It is demonstrated by the experiments that this alternative switching criterion works well on the noiseless ICA problem with both super- and sub-Gaussian sources.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 68, October 2005, Pages 267-272
نویسندگان
, , ,