کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653439 | 679189 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A functional neural network for computing the largest modulus eigenvalues and their corresponding eigenvectors of an anti-symmetric matrix
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Efficient computation of the largest modulus eigenvalues of a real anti-symmetric matrix is a very important problem in engineering. Using a neural network to complete these operations is in an asynchronous manner and can achieve high performance. This paper proposes a functional neural network (FNN) that can be transformed into a complex differential equation to do this work. Firstly, the mathematical analytic solution of the equation is received, and then the convergence properties of this FNN are analyzed. The simulation result indicates that with general initial complex values, the network will converge to the complex eigenvector corresponding to the eigenvalue whose imaginary part is positive, and modulus is the largest of all eigenvalues. Comparing with other neural networks used for computing eigenvalues and eigenvectors, this network is adaptive to real anti-symmetric matrices for completing these operations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 67, August 2005, Pages 384-397
Journal: Neurocomputing - Volume 67, August 2005, Pages 384-397
نویسندگان
Yiguang Liu, Zhisheng You, Liping Cao,