کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653441 | 679189 | 2005 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Boosting Naı¨ve Bayes text classification using uncertainty-based selective sampling
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents adaptive boosting with uncertainty-based selective sampling (AdaBUS), a variant of the AdaBoost algorithm for boosting the Naı¨ve Bayes (NB) text classification. Although the boosting technique has been shown to effectively improve the accuracy of machine-learning-based classifiers, boosting does not work well with NB text classification owing to the low variance in the accuracy of its base classifier. In this study, we propose boosting the NB text classifier by combining the AdaBoost boosting algorithm with uncertainty-based selective sampling. Experiments using the popular Reuters-21578 document collection showed that the proposed algorithm effectively improves classification accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 67, August 2005, Pages 403-410
Journal: Neurocomputing - Volume 67, August 2005, Pages 403-410
نویسندگان
Han-Joon Kim, Je-Uk Kim, Young-Gook Ra,