| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9653523 | 679194 | 2005 | 13 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Estimation of single-neuron model parameters from spike train data
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Estimating parameters for models of neurons requires a quantitative comparison between the model output and empirical data. The present study compares three error functions: voltage time-series (VTS), cumulative voltage integrals (CVI), and phase histograms (PH). In two test cases, predefined models were used to produce target data and to compare the efficacy of the three error functions when they were used to recover the target data. In a third example, empirical data were used to parameterize a model. VTS was found to be inferior, whereas as CVI and PH were similar and effective. Reliable parameters were derived from analyzing as few as two data sets.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volumes 65â66, June 2005, Pages 517-529
											Journal: Neurocomputing - Volumes 65â66, June 2005, Pages 517-529
نویسندگان
												Randall D. Hayes, John H. Byrne, Steven J. Cox, Douglas A. Baxter,