کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653560 | 679201 | 2005 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Merge SOM for temporal data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The recent merging self-organizing map (MSOM) for unsupervised sequence processing constitutes a fast, intuitive, and powerful unsupervised learning model. In this paper, we investigate its theoretical and practical properties. Particular focus is put on the context established by the self-organizing MSOM, and theoretic results on the representation capabilities and the MSOM training dynamic are presented. For practical studies, the context model is combined with the neural gas vector quantizer to obtain merging neural gas (MNG) for temporal data. The suitability of MNG is demonstrated by experiments with artificial and real-world sequences with one- and multi-dimensional inputs from discrete and continuous domains.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 64, March 2005, Pages 39-71
Journal: Neurocomputing - Volume 64, March 2005, Pages 39-71
نویسندگان
Marc Strickert, Barbara Hammer,