کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653571 | 679201 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
New globally convergent training scheme based on the resilient propagation algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a new globally convergent modification of the Resilient Propagation-Rprop algorithm is presented. This new addition to the Rprop family of methods builds on a mathematical framework for the convergence analysis that ensures that the adaptive local learning rates of the Rprop's schedule generate a descent search direction at each iteration. Simulation results in six problems of the PROBEN1 benchmark collection show that the globally convergent modification of the Rprop algorithm exhibits improved learning speed, and compares favorably against the original Rprop and the Improved Rprop, a recently proposed Rrpop modification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 64, March 2005, Pages 253-270
Journal: Neurocomputing - Volume 64, March 2005, Pages 253-270
نویسندگان
Aristoklis D. Anastasiadis, George D. Magoulas, Michael N. Vrahatis,