کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653577 | 679201 | 2005 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An improved neural network for convex quadratic optimization with application to real-time beamforming
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper develops an improved neural network to solve convex quadratic optimization problems with general linear constraints. Compared with the existing primal-dual neural network and dual neural network for solving such problems, the proposed neural network has a lower complexity for implementation. Unlike the Kennedy-Chua neural network, the proposed neural network can converge to an exact optimal solution. Analyzed results and illustrative examples show that the proposed neural network has a fast convergence to the optimal solution. Finally, the proposed neural network is effectively applied to real-time beamforming.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 64, March 2005, Pages 359-374
Journal: Neurocomputing - Volume 64, March 2005, Pages 359-374
نویسندگان
Youshen Xia, Gang Feng,