کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9657761 690365 2005 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Absolute exponential stability of a class of recurrent neural networks with multiple and variable delays
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Absolute exponential stability of a class of recurrent neural networks with multiple and variable delays
چکیده انگلیسی
In this paper, we derive some new conditions for absolute exponential stability (AEST) of a class of recurrent neural networks with multiple and variable delays. By using the Holder's inequality and the Young's inequality to estimate the derivatives of the Lyapunov functionals, we are able to establish more general results than some existing ones. The first type of conditions established involves the convex combinations of column-sum and row-sum dominance of the neural network weight matrices, while the second type involves the p-norm of the weight matrices with p∈[1,+∞].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 344, Issues 2–3, 17 November 2005, Pages 103-119
نویسندگان
, , ,