کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9678400 1454325 2005 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Surfactant encapsulated DNA: structure characterization and interaction with dye molecules in organic media
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Surfactant encapsulated DNA: structure characterization and interaction with dye molecules in organic media
چکیده انگلیسی
The recognition of electrostatically-bound DNA-didodecyldimethylammonium (DNA-DDDA) complex by three dye molecules, acridine orange (AO), ethidium bromide (EB) and 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin tetra(p-toluenesulfonate) (TMPyP) in organic media was investigated through 1H NMR, UV-vis, and circular dichroism (CD) spectroscopies. When the organic solvent in which DNA-DDDA complex dissolves is changed from ethanol to chloroform, the adsorbed AO undergoes a reversible transformation from a monomer to a highly aggregated state at the interface between DNA and DDDA. EB also adsorbs at the interface between DNA and DDDA when EB interacts with the DNA-DDDA complex in organic media, but its existing state is independent of the used solvents. The third dye, TMPyP cation can intercalate into the G-C region while its anionic p-tosylate counterion remains unbound when it mixes with DNA complex in organic media. The complexes of DDDA with previously recognized DNA by the three dye molecules (DNA-dye), respectively, are also investigated. AO seems having changed its location from the grooves of DNA to the interface between DNA and DDDA after DNA-AO complex was electrostatically encapsulated with DDDA. The aggregation behavior of AO also shows a dependence on the polarity of the organic solvent. EB molecules are believed to intercalate into the base pairs of DNA in aqueous solution. The intercalation mode is still maintained after the encapsulation for DNA-EB in organic solvents, which is different from the situation between DNA-DDDA complex and EB. But in both cases, the existing states of EB are independent of the polarity of the organic solvents. Finally, TMPyP in the complex of DNA-TMPyP and DDDA is also judged to intercalate into the G-C region of DNA while its anionic p-tosylate counterion remains separated from DNA complex, which is similar to its interaction with DNA-DDDA complex in organic media. These data also strongly suggest that the intercalation state of TMPyP is more stable than its adsorption state in grooves when it is recognized with DNA. The present results are significant for the designs of both laser dye and conductive materials.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Colloids and Surfaces B: Biointerfaces - Volume 41, Issues 2–3, 25 March 2005, Pages 181-187
نویسندگان
, , , ,