| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9727872 | 1480212 | 2005 | 17 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Debye-Hückel theory for two-dimensional Coulomb systems living on a finite surface without boundaries
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													فیزیک ریاضی
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												We study the statistical mechanics of a multicomponent two-dimensional Coulomb gas which lives on a finite surface without boundaries. We formulate the Debye-Hückel theory for such systems, which describes the low-coupling regime. There are several problems, which we address, to properly formulate the Debye-Hückel theory. These problems are related to the fact that the electric potential of a single charge cannot be defined on a finite surface without boundaries. One can only properly define the Coulomb potential created by a globally neutral system of charges. As an application of our formulation, we study, in the Debye-Hückel regime, the thermodynamics of a Coulomb gas living on a sphere of radius R. We find, in this example, that the grand potential (times the inverse temperature) has a universal finite-size correction 13lnR. We show that this result is more general: for any arbitrary finite geometry without boundaries, the grand potential has a finite-size correction (Ï/6)lnR, with Ï the Euler characteristic of the surface and R2 its area.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 349, Issues 1â2, 1 April 2005, Pages 155-171
											Journal: Physica A: Statistical Mechanics and its Applications - Volume 349, Issues 1â2, 1 April 2005, Pages 155-171
نویسندگان
												Gabriel Téllez,