کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
974699 | 932995 | 2009 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The partition function zeros of the anisotropic Ising model with multisite interactions on a zigzag ladder
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is shown that the spin-12 anisotropic Ising model with multisite interactions on a zigzag ladder may be mapped into the one dimensional spin-12 Axial-Next-Nearest-Neighbor Ising (ANNNI) model with multisite interactions. The partition function zeros of the ANNNI model with multisite interactions are investigated. A comprehensive analysis of the partition function zeros of the ANNNI model with and without three-site interactions on a zigzag ladder is done using the transfer matrix method. Analytical equations for the distribution of the partition function zeros in the complex magnetic field (Yang-Lee zeros) and temperature (Fisher zeros) planes are derived. The Yang-Lee and Fisher zeros distributions are studied numerically for a variety of values of the model parameters. The densities of the Yang-Lee and Fisher zeros are studied and the corresponding edge singularity exponents are calculated. It is shown that the introduction of three-site interaction terms in the ANNNI model leads to a simpler distribution of the partition function zeros. For example, the Yang-Lee zeros tend to a circular distribution when increasing by modulus the three-site interactions term coefficient. It is found that the Yang-Lee and Fisher edge singularity exponents are universal and equal to each other, Ï=â12.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 388, Issue 8, 15 April 2009, Pages 1479-1490
Journal: Physica A: Statistical Mechanics and its Applications - Volume 388, Issue 8, 15 April 2009, Pages 1479-1490
نویسندگان
V.V. Hovhannisyan, R.G. Ghulghazaryan, N.S. Ananikian,