کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
974817 1480135 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The spectral gap and the dynamical critical exponent of an exact solvable probabilistic cellular automaton
ترجمه فارسی عنوان
شکاف طیفی و شاخص انتقادی دینامیکی یک ماشین سلولی احتمالاتی قابل حل دقیق
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی


• A cellular automaton related to a diagonal-to-diagonal six-vertex model is proposed.
• We obtained the exact solution of the model and we found the spectral gap.
• The model belongs to the KPZ universality class.

We obtained the exact solution of a probabilistic cellular automaton related to the diagonal-to-diagonal transfer matrix of the six-vertex model on a square lattice. The model describes the flow of ants (or particles), traveling on a one-dimensional lattice whose sites are small craters containing sleeping or awake ants (two kinds of particles). We found the Bethe ansatz equations and the spectral gap for the time-evolution operator of the cellular automaton. From the spectral gap we show that in the asymmetric case it belongs to the Kardar–Parisi–Zhang (KPZ) universality class, exhibiting a dynamical critical exponent value z=32. This result is also obtained from a direct Monte Carlo simulation, by evaluating the lattice-size dependence of the decay time to the stationary state.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 438, 15 November 2015, Pages 56–65
نویسندگان
, , ,