کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
975075 | 933015 | 2008 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A continuous variant for Grünwald-Letnikov fractional derivatives
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The names of Grünwald and Letnikov are associated with discrete convolutions of mesh h, multiplied by hâα. When h tends to zero, the result tends to a Marchaud's derivative (of the order of α) of the function to which the convolution is applied. The weights wkα of such discrete convolutions form well-defined sequences, proportional to kâαâ1 near infinity, and all moments of integer order r<α are equal to zero, provided α is not an integer. We present a continuous variant of Grünwald-Letnikov formulas, with integrals instead of series. It involves a convolution kernel which mimics the above-mentioned features of Grünwald-Letnikov weights. A first application consists in computing the flux of particles spreading according to random walks with heavy-tailed jump distributions, possibly involving boundary conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 12, 1 May 2008, Pages 2750-2760
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 12, 1 May 2008, Pages 2750-2760
نویسندگان
Marie-Christine Néel, Ali Abdennadher, Joelson Solofoniaina,