کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
975290 933023 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiplicative duality, q  -triplet and (μ,ν,q)(μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)(μ,ν)-multinomial coefficient and Tsallis entropy SqSq
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Multiplicative duality, q  -triplet and (μ,ν,q)(μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)(μ,ν)-multinomial coefficient and Tsallis entropy SqSq
چکیده انگلیسی

We derive the multiplicative duality “q↔1/qq↔1/q” and other typical mathematical structures as the special cases of the (μ,ν,q)(μ,ν,q)-relation behind Tsallis statistics by means of the (μ,ν)(μ,ν)-multinomial coefficient. Recently the additive duality “q↔2-qq↔2-q” in Tsallis statistics is derived in the form of the one-to-one correspondence between the q  -multinomial coefficient and Tsallis entropy. A slight generalization of this correspondence for the multiplicative duality requires the (μ,ν)(μ,ν)-multinomial coefficient as a generalization of the q  -multinomial coefficient. This combinatorial formalism provides us with the one-to-one correspondence between the (μ,ν)(μ,ν)-multinomial coefficient and Tsallis entropy SqSq, which determines a concrete relation among three parameters μ,νμ,ν and q  , i.e., ν(1-μ)+1=qν(1-μ)+1=q which is called “(μ,ν,q)(μ,ν,q)-relation” in this paper. As special cases of the (μ,ν,q)(μ,ν,q)-relation, the additive duality and the multiplicative duality are recovered when ν=1ν=1 and ν=qν=q, respectively. As other special cases, when ν=2-qν=2-q, a set of three parameters (μ,ν,q)(μ,ν,q) is identified with the q  -triplet (qsen,qrel,qstat)(qsen,qrel,qstat) recently conjectured by Tsallis. Moreover, when ν=1/qν=1/q, the relation 1/(1-qsen)=1/αmin-1/αmax1/(1-qsen)=1/αmin-1/αmax in the multifractal singularity spectrum f(α)f(α) is recovered by means of the (μ,ν,q)(μ,ν,q)-relation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 1, 1 January 2008, Pages 71–83
نویسندگان
, ,