کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
975621 1480193 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An empirical non-parametric likelihood family of data-based Benford-like distributions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
An empirical non-parametric likelihood family of data-based Benford-like distributions
چکیده انگلیسی
A mathematical expression known as Benford's law provides an example of an unexpected relationship among randomly selected sequences of first significant digits (FSDs). Newcomb [Note on the frequency of use of the different digits in natural numbers, Am. J. Math. 4 (1881) 39-40], and later Benford [The law of anomalous numbers, Proc. Am. Philos. Soc. 78(4) (1938) 551-572], conjectured that FSDs would exhibit a weakly monotonic decreasing distribution and proposed a frequency proportional to the logarithmic rule. Unfortunately, the Benford FSD function does not hold for a wide range of scale-invariant multiplicative data. To confront this problem we use information-theoretic methods to develop a data-based family of alternative Benford-like exponential distributions that provide null hypotheses for testing purposes. Two data sets are used to illustrate the performance of generalized Benford-like distributions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 380, 1 July 2007, Pages 429-438
نویسندگان
, , ,