کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
976086 933079 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records
چکیده انگلیسی

In these lecture notes I will discuss the universal first-passage properties of a simple correlated discrete-time sequence {x0=0,x1,x2,…,xn}{x0=0,x1,x2,…,xn} up to nn steps where xixi represents the position at step ii of a random walker hopping on a continuous line by drawing independently, at each time step, a random jump length from an arbitrary symmetric and continuous distribution (it includes, e.g., the Lévy flights). I will focus on the statistics of two extreme observables associated with the sequence: (i) its global maximum and the time step at which the maximum occurs and (ii) the number of records in the sequence and their ages. I will demonstrate how the universal statistics of these observables emerge as a consequence of Pollaczek–Spitzer formula and the associated Sparre Andersen theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 389, Issue 20, 15 October 2010, Pages 4299–4316
نویسندگان
,