کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
976514 | 933134 | 2008 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A class of improved algorithms for detecting communities in complex networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Detecting communities in complex networks is of considerable importance for understanding both the structure and function of the networks. Here, we propose a class of improved algorithms for community detection, by combining the betweenness algorithm of Girvan and Newman with the edge weight defined by the edge-clustering coefficient. The improved algorithms are tested on some artificial and real-world networks, and the results show that they can detect communities of networks more effectively in both unweighted and weighted cases. In addition, the technique for improving the betweenness algorithm in this paper, thanks to its compatibility, can directly be applied to various detection algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 13, 15 May 2008, Pages 3327–3334
Journal: Physica A: Statistical Mechanics and its Applications - Volume 387, Issue 13, 15 May 2008, Pages 3327–3334
نویسندگان
Ju Xiang, Ke Hu, Yi Tang,