کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
977060 | 1480109 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Complex network modeling of spectral remotely sensed imagery: A case study of massive green algae blooms detection based on MODIS data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Feature bands selection and targets classification is of great importance in spectral remotely sensed imagery interpretation. In this work, complex network is adopted for modeling spectral remotely sensed imagery. Subnet is constructed for each band based on spatial neighboring characteristic. Feature bands could be obtained by analyzing and comparing topological characteristics between subnets. After finding feature bands, subnets of feature bands are compounded. Targets classification could be measured by degree distribution of the composited network. This approach is evaluated with empirical experiments based on detecting massive green algae blooms with MODIS data. Feature bands found are coincided with spectral mechanism of green algae. By comparing with FAI, RVI, NDVI, EVI and OSABI methods, our approach improves correct classification rates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 464, 15 December 2016, Pages 138-148
Journal: Physica A: Statistical Mechanics and its Applications - Volume 464, 15 December 2016, Pages 138-148
نویسندگان
Yi Sui, Fengjing Shao, Changying Wang, Rencheng Sun, Jun Ji,